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Abstract. The traditional way of training a machine learning model consid-
ers that both data and model are available at the same place (called central-
ized model). However, there are plenty of cases in which this statement is not
true, specially if we consider the edge devices. Moreover, there are situations
in which besides having the data divided across several devices, sharing them
is not an option, due to privacy concerns. In this context, a recent research
area called Federated Learning (FL) aims to target this problem by training a
single model in a distributed fashion. At the same time, another research area
called Neural Architecture Search (NAS) tries to solve a different problem of
finding the neural network for a given problem in an automated fashion, instead
of hand-crafting its design. In this work, we attempt to provide a full compar-
ison of both these areas and the relationships between them. We compare the
scenarios of centralized and federated learning, each of them making use or
not of a NAS framework. The source code used to train the models presented
in this project is available at https://github.com/ito-rafael/
MO809A-FederatedLearning/tree/main/project/code.

Resumo. A forma tradicional de se treinar um modelo de aprendizado de
máquina considera que ambos dados e modelo estão disponı́veis no mesmo
local (chamado de modelo centralizado). No entanto, existem muitos casos
em que essa afirmação não é verdadeira, especialmente se considerarmos os
dispositivos de borda. Além disso, há situações em que além de ter os da-
dos divididos em vários dispositivos, compartilhá-los não é uma opção, devi-
do a questões de privacidade. Nesse contexto, uma área de pesquisa recente
chamada Aprendizado Federado (FL) visa abordar esse problema treinando
um único modelo de maneira distribuı́da. Ao mesmo tempo, outra área
de pesquisa chamada Neural Architecture Search (NAS) tenta resolver um
problema diferente de encontrar a rede neural para um determinado prob-
lema de maneira automatizada, ao invés de criar seu design manualmente.
Neste trabalho, tentamos fornecer uma comparação completa de ambas as
áreas e as relações entre elas. Comparamos os cenários de aprendizado
centralizado e federado, cada um deles fazendo uso ou não de um frame-
work de NAS. O código-fonte utilizado para treinar os modelos apresentados
neste projeto está disponı́vel em https://github.com/ito-rafael/
MO809A-FederatedLearning/tree/main/project/code.



1. Introduction
The 21st century has undoubtedly become the data age. Powered by the expansion of
the Internet and the emergence of concepts such as the so-called Fourth Revolution (e.g.
Industry 4.0, Health 4.0), disruptive innovations have increasingly gained space on the
global stage. These new digital tools integrate various innovations such as Internet of
Things (IoT), Internet of Bodies (IoB), Big Data and Machine Learning (ML) that have
resulted in advances in digital health, smart manufacturing and self-driving cars.

In this context, the essential part is the data. The information that flows between
the countless entities that make up these intelligent systems has a significant value, to the
point that data can already be considered the new oil of this century [Bhageshpur 2019].
On a philosophical realm, data can also be considered an emerging ideology or even a new
form of religion, some authors describe the great data revolution as dataism, as discussed
by [Harari 2017].

In a scenario where data has a high commercial value while being highly sensi-
tive, new concerns about privacy and data governance have arisen. Many efforts have
been made towards the complexity of collecting, curating and maintaining a high-quality
dataset, while meeting regulatory, ethical and legal challenges. These data-driven ef-
forts have been identified as one of the great challenges in healthcare area, for example
[Rieke et al. 2020].

In the context of healthcare, the data produced in this environment has been
a bottleneck since health data is highly sensitive and its usage is tightly regulated
[van Panhuis et al. 2014]. One of the biggest challenges regarding health data is the is-
sue of patient privacy, as even the anonymization process of data may not be sufficient to
preserve privacy [Rocher et al. 2019]. Another problem is information leakage that can
cause great harm to both patients and healthcare providers.

Faced with these issues and also in other domains, a learning paradigm emerges
seeking to address the problem of data governance and privacy by training algorithms
collaboratively without exchanging the data itself. This new approach is known as Fede-
rated Learning (FL). FL allows training a global model without moving data beyond the
firewalls of the local units in which they reside. Instead, the ML process occurs locally
at each participating federated entity and only model characteristics (e.g., parameters,
gradients) are transferred as depicted in Figure 1.

Mathematically, a general formulation of FL reads as follows: let ℓ denote a global
loss function obtained via a weighted combination of K local losses {ℓk}Kk=1, computed
from private data Xk, which is residing at the individual involved parties and never shared
among them:

min
ϕ

ℓ (X;ϕ) with ℓ (X;ϕ) =
K∑
k=1

[wk ℓk (Xk;ϕ)] , (1)

where wk > 0 denote the respective weight coefficients. In practice, each federation unit
(training node) typically obtains and refines a global consensus model by performing a
few rounds of optimization locally and before sharing updates, either directly or through
a parameter server.

As a contribution to the study of FL, this paper compares the performance of four
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Figure 1. Example of federated learning (FL) workflows. (a) FL aggregation server
— typical FL workflow in which a federation of local units (training nodes)
receive the global model, locally trains the models using the local data,
resubmit their partially trained models to a central server intermittently for
aggregation and then continue training on the consensus model that the
server returns. (b) FL peer-to-peer — alternative formulation of FL in which
each local unit exchanges its partially trained models with some or all of
its peers and each does its own aggregation, without the central server.
Adapted from [Rieke et al. 2020].

ML approaches — centralized DenseNet, centralized MiLeNAS, Federated Averaging
(FedAvg) and Federated Neural Architecture Search (FedNAS) — over a non-IID (non
identical and independent distribution) image dataset based on CIFAR10 deployed in a
distributed computing environment consisting of 10 clients and 1 server for the FedAvg
approach, 5 clients and 1 server for the FedNAS approach, and a single node for the
centralized approaches. The following section 2 summarizes previous works relevant to
the FL context in order to establish the link between existing knowledge in this learn-
ing paradigm and new findings. The rest of this paper is organized as follows: section
3 presents the techniques and materials used in this study, section 4 describes how the
experiments were set up and their respective performances, and section 5 concludes the
findings achieved in this work.

2. Related Works
Neural Architecture Search (NAS) is one of the three subfields of the AutoML (automated
machine learning) research area, alonside with Hyperparameter Optimization and Meta-
learning [Hutter et al. 2019]. The main idea is to automatically search for the neural
architecture (number of layers, operations, number of channels, etc.), instead of hand-



crafting it. There are several strategies in NAS that tries to automate the design of the
neural network for a given problem, such as reinforcement learning [Zoph and Le 2017],
evolutionary algorithms [Real et al. 2017], gradient descent techniques [Liu et al. 2018],
random search [Li and Talwalkar 2019], and many others.

Recently, a few works started combining both fields of NAS and Federated Learn-
ing. [Zhu et al. 2020] did a survey with a brief review in both research areas and the
relationships between them. [Zhu and Jin 2020] performed NAS in a federated learning
paradigm using evolutionary algorithms. [Yuan et al. 2022] presented a federated NAS
approach considering the cross-device scenario, while [He et al. 2021] did the same, but
for a cross-organization scenario (cross-silo). Our work is more close to the last one, but
instead of proposing a different federated NAS method, we aim to make a comparison
between centralized and federated scenarios, considering or not the automated search of
the neural networks with NAS.

The Federated Averaging (FedAvg) — which will be properly discussed in detail
in subsection 3.2.3 — is an effective yet simple algorithm that is most commonly used for
federated aggregation. The FedAvg aggregation is the main method to improve model
performance in FL domain, it consists of equal distribution of model parameters for every
local model [Jiang et al. 2020].

3. Materials and Methods
This section gives a detailed account of the procedures as well as the materials and tech-
niques used in this work. Subsection 3.1 presents the dataset used in the experiments and
the applied approaches are described in subsection 3.2.

3.1. Dataset

Aiming to investigate the performance of each ML approaches assessed here, a collection
of labeled images that are commonly used to train ML and computer vision models was
used, the CIFAR-10. This dataset contains 60,000 color images pre-processed into 32 ×
32 (2D) with the corresponding classification labels. The ten different classes represent
airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships and trucks. Figure 2 displays
10 random samples of each class present in the database.

Figure 2. Random images samples of CIFAR-10 dataset.



The CIFAR-10 dataset is subdivided by default into two subsets: 50,000 training
images and 10,000 test images. To evaluate the models, we generate non-IID dataset by
splitting the 50,000 training images into K clients in an unbalanced manner: sampling
pc ∼ DirJ(0.5) and allocating a pc,k proportion of the training samples of class c to local
client k. The remaining 10,000 test images are used for a global test after the aggregation
of each round.

3.2. Approaches

Four approaches were compared during the experiments, two in a centralized way —
DenseNet and MiLeNAS — and the remaining two in a federated context — FedAvg
(DenseNet) and FedNAS (MiLeNAS). Table 1 below summarizes which techniques
were applied (or not) Neural Architecture Search and Federated Learing.

NAS FL
DenseNet ✗ ✗

MiLeNAS ✓ ✗

FedAvg (DenseNet) ✗ ✓

FedNAS (MiLeNAS) ✓ ✓

Table 1. Comparison between the evaluated approaches.

3.2.1. Centralized DenseNet

The first approach considered is the centralized paradigm without using NAS to search for
the architecture. The fixed architecture used here is the DenseNet [Huang et al. 2016].
This choice was made since this neural network presents decent results in computer vision
tasks reported in the literature, and also to be able to compare the results with the one made
by [He et al. 2021], since they used this same architecture.

The DenseNet architecture is an extension of the ResNet [He et al. 2015], a neu-
ral network that won the ImageNet [Deng et al. 2009] competition in 2015, that con-
nects each layer to every other layer of the network. Figure 3 illustrates the architecture
of the DenseNet.

3.2.2. Centralized MiLeNAS

The centralized approach but using NAS to find the final architecture used the MiLeNAS
[He et al. 2020b] framework. This framework is similar to the DARTS framework
[Liu et al. 2018]. The difference is that while DARTS use the training set to train the
network weights and the validation set to train the architecture parameters separately,
the MiLeNAS still uses the training set for the network weigths, but also incorpored the
training set to train the architecture parameters. That is, they used both the training and
validation set to find the architecture parameters. This leads to improvements in both
search time and final accuracy, as reported by the authors. Figure 4 shows a flowchart
demonstrating the MiLeNAS framework. As usual in the NAS works, w represents the
neural network weights and α represents the architecture parameters.



Figure 3. DenseNet architecture: each layer is connected to every other layer of
the network. Figure taken from [Huang et al. 2016].

Figure 4. MiLeNAS algorithm proposed by [He et al. 2020b].

3.2.3. Federated Averaging (FedAvg)

Federated Averaging, popularly known as FedAvg, is a communication efficient algo-
rithm proposed by [Brendan McMahan et al. 2017] for the distributed training with a
huge number of clients (training nodes), such as smartphones, smartwatches, autonomous
vehicles and hospitals. In FedAvg, client data is kept locally for privacy protection, and



a central parameter server is used for communication between the training nodes. This
central server distributes parameters to each client and collects updated parameters from
clients. The clients achieve communication efficiency by making multiple local updates
of a shared global model before sending the result to the central server, which averages
the locally updated models to aggregates the next global model [Collins et al. 2022]. The
FedAvg algorithm workflow is depicted in Figure 5 below.

Figure 5. FedAvg algorithm proposed by [Brendan McMahan et al. 2017]. The K
clients are indexed by k, B is the local minibatch size, E is the number os
local epochs and η is the learning rate.

3.2.4. Federated Neural Architecture Search (FedNAS)

The Federated Neural Architecture Search (FedNAS) is a distributed neural architecture
search algorithm proposed by [He et al. 2020a] for automating the model design process
in the FL context. According to the authors, FedNAS allows for a collaborative search
for a better architecture to achieve better performance. In addition to automating and
improving FL model design, FedNAS also provides a new paradigm for custom FL via
customizing not only the model weights (w) but also the neural architecture (α) of each
user.

In the FL setting, there are K local nodes in the network. Each node has a private
dataset Dk :=

{(
xk
i , yi

)}Nk

i=1
wich is non-IID. When collaboratively training a model with

K nodes, the objective function is defined as follows:

min
w

f(w, α︸︷︷︸
fixed

)
def
= min

w

K∑
k=1

Nk

N
· 1

Nk

∑
i∈Dk

ℓ(xi, yi;w, α︸︷︷︸
fixed

) (2)



where w denotes the network weight, α determines the neural architecture and ℓ is the loss
function of the model. To minimize the objective function above, previous works choose a
fixed model architecture α then design variant optimization techniques to train the model
w. On the other hand, FedNAS proposes to optimize the FL problem from a completely
different angle, optimizing w and α simultaneously. Thus, the objective function in this
scenario is reformulated as:

min
w,α

f(w, α)
def
= min

w,α

K∑
k=1

Nk

N
· 1

Nk

∑
i∈Dk

ℓ(xi, yi;w, α) (3)

The process performed by the FedNAS is summarized in the flowchart shown in
the Figure 6.

Figure 6. FedNAS algorithm proposed by [He et al. 2020a]. The K clients are se-
lected and indexed by k, E is the number of local epochs, T is the number
of rounds.

4. Experiments and Results

In this section, details about the experiments done for the four approaches discussed in
section 3.2 are given. All experiments were done in Python using the PyTorch framework.
For the federated approaches, we used the Flower framework for the implementation of
the server and the clients, and a non-IID data distribution was adopted. The training
parameters were the same of [He et al. 2020b], since the base of the code used was the
same.

The system was architectured to be run in a Docker container. Inside the container,
the code for all four approaches can be found. For the centralized versions, the training
procedure is the conventional, with a single Python code running the training. For the
federated versions though, the code is split into the server and the clients. While the



server runs only once and contains information about the aggregation method and the
number of epochs for each round, for example, the clients are launched by a shell script,
that defines the total number of clients being considered in the experiment and the portion
of the dataset allocated for each client. Figure 7 depicts this architecture.

Figure 7. System design.

4.1. Centralized DenseNet

This first experiment used the fixed DenseNet-201 architecture and performed the con-
ventional training. In total, three runs were done for this scenario. The first run resulted
in a final accuracy of 83.44% top-1 accuracy and took 4h02min. The second run achieved
84.53% accuracy taking 4h13min to be trained. The last run got 83.53% and 3h48min.
All runs were done in a single RTX 2080 Ti GPU with 11 GB of memory.

4.2. Centralized MiLeNAS

The second approach also used a single RTX 2080 Ti GPU with 11 GB of memory. In
these experiments, instead of fixing the neural network a priori, the MiLeNAS framework
was used to search the final architecture. Three runs were also done: the first one achieved
89.10% top-1 accuracy under the test set and took 10h31min, the second run resulted in
88.60% accuracy with a total time of 11h51min, and the last one got 88.80% accuracy
taking 12h13min to train.

4.3. Federated Averaging (FedAvg)

In this federated scenario the data needed to be divided into the number clients. Here we
considered a total of 10 clients with data divided in a non-IID fashion. Table 2 shows the
data distribution, where k is the ID of the client and Cn represents the data of class n in
the CIFAR-10 dataset. Note that the total amount of data is 50,000, equally divided in all
classes (5,000 samples per class).

Again, we did three runs for this setup. The GPU used in these experiments was
a single Quadro RTX 8000 with 48 GB of memory. The number of clients was 10 and all
clients participated of all rounds. Each client trained considering only its own data for 10



C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 Total
k=0 2538 2206 409 3154 40 178 387 128 2363 0 11403
k=1 43 215 202 1423 1777 2276 1 498 446 878 7759
k=2 23 1517 1244 192 2349 208 259 2175 682 114 8763
k=3 1053 1004 2473 0 108 512 897 1057 1368 2583 11055
k=4 1343 58 672 231 726 1826 3456 1142 141 1425 11020
total 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 50000

Table 2. Data distribution for the 10 clients in the federated scenario without NAS.

epochs per round. The total training lasted 100 rounds and the aggregation method used
by the server was the FedAvg.

The first run resulted in a final accuracy of 57.54% top-1 accuracy under the test
set and took 6h34min to accomplish the training. The second run achieved 56.83% accu-
racy taking 7h17min to finish. The last run got 56.23% accuracy in 6h50min.

4.4. Federated Neural Architecture Search (FedNAS)

In this last federated scenario, each client ran in its own GPU, since they would not fit
in a single GPU, due to memory limitation. The data was then divided into five different
clients. Again we considered a non-IID data distribution that can be seen in Table 3.

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 Total
k=0 953 142 141 75 695 819 0 2482 0 0 5307
k=1 16 43 902 1650 86 182 0 693 110 6 3688
k=2 9 8 290 769 841 283 119 1044 1014 58 4435
k=3 395 1200 48 68 896 681 90 17 1351 301 5047
k=4 504 2917 570 721 121 356 0 0 0 0 5189
k=5 1262 71 325 119 1560 14 1 85 366 0 3803
k=6 9 273 1657 40 1 130 1911 21 1160 0 5202
k=7 722 3 281 738 22 974 624 1 82 878 4325
k=8 1127 153 680 500 698 1139 92 23 1 3665 8078
k=9 3 190 106 320 80 422 2163 634 916 92 4926
Total 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 50000

Table 3. Data distribution for the 5 clients in the federated scenario using NAS.

With this configuration only a single run was done, due to the relative high de-
manding for computational resources. Each client was trained in a RTX 2080 Ti with
11 GB of memory with its own data, and trained for one epoch in each round. The total
training lasted the same 100 rounds as the previous setup, but the aggregation method
used by the server was the FedNAS. That is, it used the FedAvg for the network weights
and a similar aggregation for the architecture parameters. The final top-1 accuracy was of
83.77% and the total training took 19h27min.

Figure 8 shows the results for each of the previous scenarios described. The left
part of the figure shows the results of the centralized approaches, with the red curve be-
ing the DenseNet and the green curve being the architecture found by the MiLeNAS
framework. The right side of the figure illustrates the results obtained for the federated



approaches, with the blue curve being the federated DenseNet and the pink curve be-
ing the federated MiLeNAS approach. Note that the y-axis of both plots represents the
top-1 percentage accuracy under the teste set of CIFAR-10, while the x-axis represents
the number of epochs for the centralized approaches and the number of rounds for the
federated approaches.

Figure 8. Comparison between all four approaches considered in the experi-
ments.

5. Conclusion
Comparing centralized and federated learning may not be fair, since in federated ap-
proaches the data are divided across the clients and there are potential obstacles to the
training, such as non-IID data and the longer time for convergence. Saying that, there
are still some insights that we can take from the results obtained of the experiments. As
we can see in Figure 8, searching for the final architecture using a NAS framework in-
stead of using a fixed one can help finding for better architectures. In both centralized
and federated approaches, the architecture found by the MiLeNAS framework achieved
a final better accuracy and also reached that in less time than the approaches with a fair
fixed architecture (DenseNet). Furthermore, the FedNAS aggregation method for both
network weights and architecture parameters helps to make the training more stable if we
compare both the federated approaches. Finally, if the dataset is available all in one place,
we may expect a centralized approach to perform better. However, if the data is divided
across many clients and data privacy is a concern, it is simply not possible to share in-
formation between the nodes. Then, the federated learning paradigm arrives to solve this



problem of training a single model in this challenging scheme. Additionally, associat-
ing NAS techniques to both centralized and federated scenarios can help to improve the
efficiency of the machine learning pipeline by finding better architectures in less time.
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