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Abstract — Human activity recognition (HAR) has lately become a field of high interest within medical, sporty, aging care, rehabilitation
scenarios. The ability to automatically recognize a person’s context can be done through gadgets used in everyday life, especially wearables.
HAR systems process the signals from the sensors present in these devices and extract features to train machine learning (ML) models capable
of recognizing the activities performed by the user. The applications range from fitness tracking apps to solutions capable of calling the
emergency if the user has suffered a serious accident. In this paper, two supervised ML approaches were compared using a public dataset for
recognition of four selected everyday activities.
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1. Introduction
The behavioral context of a person depends on different
circumstances, i.e., is the person alone or accompanied?
is he/she indoors or outdoors? what kind of activity is
the person doing? and so on. Human activity recognition
(HAR) has become a area of study of high interest within
medical, sporty, aging care, rehabilitation scenarios. The
ability to automatically recognize a person’s context is
very beneficial in many domains and this can be done
through gadgets (e.g. smartphones, smartwatches, etc).
The emergence of wearable devices has enabled applica-
tions that help monitoring sedentary behavior, protecting
people from Office Workers Syndrome (OWS), tracking
physical activity, sleep monitoring, elderly and specific
care [3]. These applications range from a pop-up that
notifies the user that he/she has already spent too much
time sitting down and it is time to move, to calling an
emergency if the person has suffered a serious accident.

The most commonly activities related to HAR re-
search are walking, running, biking, jogging, remaining
still, walking upstairs, and walking downstairs [6]. But
the set of activities are not restricted to just these, other
activities with a high level of complexity, such as work-
ing and studying, are also included. For a simple activity
set, that includes only the activities of moving and not
moving — walking and sitting, for example — can be
used inertial sensors to measure proper acceleration, ori-
entation and angular velocity of the body. For more com-
plex scenarios — is the person at home? is the person
with friends? — context signals may be needed. In these
cases, additional signals such as GPS and audio may be
used, although such sensors may pose user privacy issues.

In addition to technical complexity, HAR is intrin-
sically connected to ethical aspects. There is a fine line
between the benefits provided by these applications and
the privacy and integrity of user data. To deal with this is-
sue, a learning paradigm emerges seeking to address the
problem of data governance and privacy by training algo-
rithms collaboratively without exchanging the data itself.
This new approach is known as Federated Learning (FL)
[5]. FL allows training a global model without moving
data beyond the firewalls of the edge devices. Instead,
the machine learning (ML) process occurs locally at each
participating federated entity and only model characte-
ristics (e.g., parameters, gradients) are shared. In this re-
gard, FL can be applied to mitigate the risk of data expo-
sure in HAR systems and preserve users’ privacy.

According to [8], behavioral context is wide and
complex, in other words, people interact with their gad-
gets in different manners and do not focus on a single
activity. An activity like running can have different con-
texts: outside, indoors on a treadmill, at the gym, at home,
alone, with friends, and so on. People perform activi-
ties in a different manner, due fitness, gender, age, etc.
In such a broad setting, [10] points out six challenges to
be considered: (1) the selection of the attributes to be
measured; (2) the construction of a portable, unobtrusive,
and inexpensive data acquisition system; (3) the design
of feature extraction and inference methods; (4) the col-
lection of data under realistic conditions; (5) the flexibi-
lity to support new users without the need of re-training
the system; and (6) the implementation in mobile devices
meeting energy and processing requirements.

As discussed in [3], the general pipeline encompass-
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Figure 1. The general pipeline of HAR systems based in ML approaches.

ing HAR systems can be basically arranged into four main
steps: data collection, data preprocessing, feature extrac-
tion and model training and classification, as depicted in
Figure 1. In the first step, the raw data are gathered from a
smart shoes — which registers movement, rotation, speed,
impact and weight distribution in the gait [1] — or even
from a smartphone kept in your pocket, for example. Then,
in step two, the raw data is cleaned and prepared. In
the third and fourth stages, characteristic features are ex-
tracted and the model training process is carried out to
infer the activities, respectively.

Automatic HAR can be performed using a fusion of
different types of sensors embedded in gadgets. If the
person is moving, the system then uses a ML algorithm
to estimate whether the person is jogging, running or cy-
cling. On the other hand, if the system is not moving,
another algorithm can be used to determine whether the
person is sitting up watching TV or lying down asleep.
More details on how signals are processed and how al-
gorithms were developed and assessed in this work are
described in the section 2. The performance of these al-
gorithms are properly presented and discussed in section
3. Section 4. concludes the paper. And, finally, future
perspectives are presented in the section 5.

2. Materials and Methods

The design of any HAR system depends on the activi-
ties to be recognized [10]. In other words, the choice of
which variables are relevant to the problem is associated
with the context of each activity to be recognized. For
a simple activity set, that includes only the activities of
moving and not moving, thresholding the standard de-
viation of 3-axis acceleration magnitude can be enough
to reach an accuracy of 99.44%, as demonstraded in [9].

On the other hand, for more complex activity sets, ML
models for context recognition can be applied, as shown
in [8].

The training stage of these models requires a time
series of measured attributes from individuals performing
each activity. In turn, the time series are split into time
windows to apply feature extraction thereby filtering re-
levant information in the raw signals. Then, ML methods
are used to generate an activity recognition model from
the data of extracted features. Besides, for testing, data
are collected during a time window, which is used to ex-
tract features. Such feature set is evaluated in the priorly
trained ML model, generating a predicted activity. Figu-
re 2 shows the common steps involved in the processes
described above.
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Figure 2. Framework for training and testing HAR
systems based on wearable devices.
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In this work, the ExtraSensory Dataset was used
to assess the proposed models. This public dataset is
made up of a total of 308,320 labeled examples (in minu-
tes) from sixty volunteers carrying out 51 daily activi-
ties. Table 1 details statistics (over 60 participants) on the
amount of data collected. Every example contains mea-
surements from the user’s personal smartphone and from
a smartwatch that the researchers provided for some of
them. Not all the sensors were available at all times, as
Androids and iOS devices were used [7]. Table 2 speci-
fies details about the sensors.

Range Mean (SD)
Age (years) 18-42 24.7 (5.6)
Height (cm) 145-188 171 (9)
Weight (kg) 50-93 66 (11)

Body mass index (kg/m2) 18-32 23 (3)
Labeled examples 685-9706 5139 (2332)

Additional unlabeled examples 2-6218 1150 (1246)
Average applied labels/example 1.1-9.7 3.8 (1.4)

Participation duration (days) 2.9-28.1 7.6 (3.2)

Table 1. Statistics over the 60 participants in the
ExtraSensory Dataset [7] (SD: standard deviation).

In order to evaluate classification performance of
the two approaches used in this work — logistic regres-
sion and k-nearest neighbors (k-NN) algorithms —, four
activities were selected: sitting, walking, sleeping and ly-
ing down. Volunteer data were subdivided into training
and test sets. In the direction of evaluating the ability of
models to generalize to unseen examples — which is one
of the main objectives for HAR systems to be used by dif-
ferent users, as discussed in [4] —, the algorithms were
trained with data from 59 participants and later tested
with data from the remaining subject (ID 098A72A5).
The data used has over 263,000 labeled examples from
sixty participants. Every example represents one minute
and has measurements from various sensors previously
presented in Table 2. Figure 3 presents the distribution of
examples in each of the selected classes in both used sets.

The sensors used were diverse and include low fre-
quency sensors (light, air pressure, humidity, tempera-
ture, proximity), audio properties (max absolute value
of recorded audio), location (latitude, longitude, altitude,
speed, accuracies), magnetometer (tri-axial direction and
magnitude of magnetic field), accelerometer (tri-axial di-
rection and magnitude of acceleration), watch accelero-
meter and compass (tri-axial acceleration and watch hea-
ding in degrees), phone state (app status, battery state,
Wi-Fi availability on the phone, time-of-day) and gyro-
scope (rate of rotation around phone’s 3 axes). From
these sensors, a total of 225 statistical features were ex-
tracted, such as: mean, standard deviation, percentiles,
entropy, energy among others.

Sensor Raw
measurements Examples Users

Accelerometer 3-axis
(40 Hz) 308,306 60

Gyroscope 3-axis
(40 Hz) 291,883 57

Magnetometer 3-axis
(40 Hz) 282,527 58

Watch
accelerometer

3-axis
(25 Hz) 210,716 56

Watch
compass

heading angle
(var) 126,781 53

Location long-lat-alt
(var) 273,737 58

Location
precomputed

location variability
(1 pe) 263,899 58

Audio 13MFCC
(46 ms frames) 302,177 60

Audio
power 1 pe 303,877 60

Phone
state 1 pe 308,320 60

Low frequency
sensors 1 pe 308,312 60

Table 2. The sensors in the ExtraSensory Dataset
[7] (“1 pe” means sampled once per example, “var”
means variable sampling rate — gathering updates
whenever the value changes).
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Figure 3. Time for every selected context label in
each set.

The statistical features were standardized by remo-
ving the mean and scaling to unit variance in order to en-
hance algorithms performance. After preparing the data,
the proposed models were properly trained. The first was
a multiclass classifier based on logistic regression. The
other model was implemented using the k-NN method,
where a search was made for the k closest training ex-
amples that minimized the average error over the train-
ing data. The two supervised approaches were compared
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against test data in terms of accuracy (percentage of how
many selected activities each model was able to classify
correctly), sensetivity (it represents the proportion of cor-
rectly classified examples among the total number of ex-
amples of each selected activity, also known as the true
positive rate — TPR), specificity (it represents the propor-
tion of correctly classified examples which do not belong
to the class that one wants to predict among the non-target
activities, also known as the true negative rate — TNR),
balanced accuracy (i.e., the average sensetivity obtained
for each class) and precision (it corresponds to the pro-
portion of patterns of the positive class, or target activity,
correctly classified in relation to all examples assigned to
the positive class).

3. Results and Discussion
As per the heatmap shown in Figure 4, for examples pre-
sent in the dataset, there is strong correlation between cer-
tain selected activities. For example, lying down comes
always with sleeping, so it is possible to see a strong
correlation (0.83) between these activities. On the other
hand, sleeping and walking show low correlation (–0.13),
since they are activities that do not happen concurrently,
in normal situations. This type of analysis is particularly
interesting, especially in less obvious relationships, as it
can help to check the correlation between sensor features
to be used in the models. Since there is a high correlation
between sleeping and lying down, different sensors can
be explored to characterize these activities: a light sen-
sor can be useful to help distinguish them, since people
tend to sleep in dark environments and usually they sit in
bright environments (in the kitchen, in the office, in the
classroom), for example.
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Figure 4. Correlation between selected context la-
bels.

To visualize the training data, besides a general non-
linear dimension reduction, the dimension reduction tech-
nique UMAP [2] was used. The n_neighbors pa-
rameter for this projection, which controls how UMAP

balances local versus global structure in the data, is 15.
The min_dist applied was 0.1, the function of this pa-
rameter is to provide the minimum distance (euclidean,
in this case) apart that points are allowed to be in the
low dimensional representation. The dimensionality of
the reduced dimension space is 2. The UMAP projection
of selected activities from the ExtraSensory Dataset onto
the training set is shown in Figure 5 below. This figure
shows two larger clusters, although it is not possible to
see a high separability as these clusters are composed of
multiple activities. In this case, one can explore the com-
bination of sensors and features extraction that are more
appropriate to separate such activities. For example, au-
dio and light signals may be more relevant to distinguish
between walking and sleeping activities, since the former
usually occurs in brighter and noisy environments, while
the latter occurs in places with opposite characteristics.

Figure 5. UMAP projection of selected context la-
bels.

Regarding training time, as expected, the logistic re-
gression method was faster than k-NN. The former took
just 55.6s and the latter took 2h 16min 56s. k-NN model
had an average performance of 0.81±0.13 (sleeping) and
0.8±0.15 (lying down) in the evaluated metrics. Using
the logistic regression method, the average performance
was 0.8±0.08 (sleeping) and 0.88±0.05 (lying down).
On the other hand, two activities were particularly chal-
lenging for both models around TPR and precision: sit-
ting and walking. k-NN model had an average perfor-
mance of 0.73±0.07 (sitting) and 0.76±0.22 (walking)
in the evaluated metrics. Using the logistic regression
method, the average performance was 0.61±0.09 (sitting)
and 0.71±0.28 (walking). The detailed result of every
model for each selected activity can be seen in Figure 6.
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Figure 6. Performance of the models evaluated.

4. Conclusion

A person’s behavioral context depends on several factors
and ranges from a simple daily task performed by a per-
son to a more complex context. In this scenario, HAR
systems have been developed to be applied in different
well-being fields: health, sports, aging care, rehabili-
tation and many others. These systems are powered by
ML models that use data from sensors present in gadgets
used in everyday life, especially wearables. Data is pro-
cessed and important features are extracted and then used
for training models that are embedded in these devices.
These applications may be able to recognize whether a
person is sleeping, walking, cooking or even sedentary.
In this paper, two supervised ML approaches were com-
pared using a public dataset for recognition of four se-
lected everyday activities. In addition to demonstrating
the performance of the assessed techniques, insights from
data analysis were also discussed and some considera-
tions were raised.

5. Future Works

During exploratory data analysis in this work, it was noted
that some of the activities were more challenging to dis-
criminate. As discussed in the section 3., proper sensing
data can simplify the activity classification process. For
example, the watch accelerometer can be a good indica-
tor for specific hand-motion activities, like typing on the
computer or cooking, while audio might better predict en-
vironmental contexts like in class or at a party. In this
sense, one can explore the combination of sensors and
feature extraction along with a cross-validation process in
model training in order to seek even more accurate per-
formance in the HAR context. Likewise, models based
on deep learning could also be evaluated, also consider-
ing the hardware constraints that wearable devices tend

to have, such as processing capacity, storage and battery.
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